Nonlinear anisotropic diffusion filters for the numerical approximation of conservation laws
نویسنده
چکیده
منابع مشابه
A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملHamburger Beitrage zur Angewandten Mathematik Image Processing for Numerical Approximations of Conservation Laws: Nonlinear anisotropic arti cial dissipation
We employ a nonlinear anisotropic di usion operator like the ones used as a means of ltering and edge enhancement in image processing, in numerical methods for conservation laws. It turns out that algorithms currently used in image processing are very well suited for the design of nonlinear higher-order dissipative terms. In particular, we stabilize the well-known Lax-Wendro formula by means of...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملHigh order relaxed schemes for nonlinear reaction diffusion problems
Different relaxation approximations to partial differential equations, including conservation laws, Hamilton-Jacobi equations, convection-diffusion problems, gas dynamics problems, have been recently proposed. The present paper focuses onto diffusive relaxed schemes for the numerical approximation of nonlinear reaction diffusion equations. High order methods are obtained by coupling ENO and WEN...
متن کامل